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DETERMTNATION OF THE T€ERMAL CHARACTHZISTICS OF A TWO-DIMENSIONAL 
LAMINAR B0UNDAFi.Y LAXER I N  A COMPRESSIBLE GAS WITHOUT A 

OF THE FDRMARD STAGNATION POINT 

s m  

LONGITUDINAL PRESSURE W I E N T ,  I N  THE V I C I N I T Y  

I. I. suksov 

Simple approximate solutions in finite form are derived f o r  

the determination of f r ic t ion ,  recovery, and heat transfer 

coefficients f o r  a plane plate in the v i c in i ty  of the  forward 

stagnation point, applicable t o  the cases of high aerodynamic 

heating in the tm-dimensionalboundary layer of a compres- 

s ib l e  gas without pressure gradient. The solutions are ex- 

tended t o  the boundary layers of bodies of revolution, over 

t he  Stepanov4angler transformation. 

Current theore t ica l  m r k s  on the  boundary layer strive t o  r e f l e c t  as fully 

as possible the  e f fec t  of high aerodynamic heating on f r i c t i o n  and heat transfer, 

For this purpose, more accurate relationships are used f o r  the  v iscos i ty  coef- 

f i c i en t ,  under consideration of the var iab i l i ty  in specific heat and Prandtl  

number as w e l l  a s  dissociation and ionization of gas. 

devoted t o  an investigation of the dynamic and thermal boundary layers i n  the 

absence of a pressure gradient (in particular on a plane plate) and in the region 

of the forward stagnation point. 

problem often reduces t o  a system of ordinary differential. equations (self-  

mapping o r  similar solutions) which i s  sometimes writ ten in integral form 

(Bibl.2, 8, 9). 

Considerable a t tent ion i s  

In the case of a laminar boundary layer, the 

The equations a re  solved numerically, usually by the method of 

~ 
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successive approximations. 

Along with these solutions it is  useful t o  develop approximate methods 

which, in addition t o  sat isfactory accuracy, possess great simplicity and yield 

r e s u l t s  in a f in i te  form, This would f a c i l i t a t e  a study of the e f fec t  of vari- 

ous independent parameters in a suff ic ient ly  wide range of variation. 

In  this work, simple approximate solutions are obLd&iSd ki f k l t z  Tom, 

yielding adequate results in determinations of f r i c t ion ,  recovery, and heat- 

t ransfer  coefficients fo r  the  case of a plane p l a t e  in  the v i c in i ty  of the f o r  

ward stagnation point, 

It may be assumed that analogous solutions can be derived when W i n g  into 

account t he  e f f ec t s  associated with high aerodynamic heating. 

1, Amroxbate  Linearization of Ebundarv-Layer h a t i o n s  

Using the  conventional formula f o r  t he  v iscos i ty  coefficient, 

the  equation of a two-dimensional steady laminar boundary layer  i n  Dorodnitsynts 

(Bibl. 5) independent var iables  /28 
C .V 

E=I-’dx, q = -L dye (1.2) . r., 
8 

k 
0 

w i l l  take the form 

where 

2 



x and y = coordinates from which the  f i r s t  i s  read off along the surface 

from the forward stagnation point and the  second along the 

outward noma1 t o  the surface, 

u and v = corresponding velocity components, 

V P-:+ an 
T P ax 

w = - + -  u-, 

p, p ,  T = pressure, density, and temperature respectiveiy, 
2 , T-% = T + = stagnation temperature, T e = -  T 

Tx-6 T* Z C P  
9 

T = -  

CL = viscosity coefficient, v = L, K = (1 + E ) ( e ,  + E)-'&, C = 
D 

- C 
Y 

- -  
T-:+ 

c = a constant (for air, c = u%), 

I = mechanical equivalent of heat, 

cp = specific heat at  constant pressure, 

Pr  = - = Prandtl  number, V C P  

k 
k = coefficient of thermal conductivity, 

Indexes: 

-\L A = stagnation, 

6 = outer l i m i t  of the boundary layer, 

w = w a l l .  

In  deriving eq~~(1.3) - (1.5) and hereafter w e  w i l l  use also the equation 

of state of an idea l  gas: 

(which holds a lso f o r  the stagnation parameters) and the Bernoulli equation: 
.t 
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' .  

h e r e  
C x = --E, cv = specif ic  heat at constant volume. 
C V  

The quant i t ies  cp, c,, and P r  are considered t o  be constant. The Prandtl  

number i s  assumed t o  be close to  unity. 

Let US examine the  solution of eqs.(1.3) - (1.5) f o r  a plane p la te  and /29 
in the  v i c in i ty  of the forward stagnation point, using a represen"ktloii of 8 

boundary layer of f inite thickness and assuming t he  thiclmesses of t he  dynamic 

and thermal boundary layers t o  be identical, The boundary conditions W i l l  be 

Here, A(?) i s  the  a rb i t ra ry  thickness of the boundary layer  in variables 

ceq. (1.2) 1. Let us introduce the  variables: 

kt US approximately express all terms of eq~~(1.3) and (1.5), except terms 
a 2e and -, by means of t h e  velocity and stagnation temperature pro- a %  

an a71 
with - 
files, whose form is known beforehand: 

(1.10) 
'9."' .- 

W e  will express w by integrating the continuity equation (1.4) provided that 

W I T -  = 0. 
- 

Furthermore, w e  w i l l  use the ident i ty  

J; rp' d;= 5 cp' - J 5 d i ,  

and reduce eqs.(l.3), (1.5), and the boundary conditions (1.8) t o  the form 
- 
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I f  

Here, 

~ 

(1.33) 

Equations (1.U) and (1.12) are linear with respect t o  the unknown fun- 

t ions w and 8 and are readily integrated in a f i n i t e  form if  w e  prescribe the 

functions 
- 

and s a s  polynomials of 71. 

The two additive functions that appear on integration a re  determined by /30 

the conditions: cpf(1) = 0 and ~ ( 0 )  = 1. 

condition ~(1) = 1 furnishes an ordinary d i f fe ren t ia l  equation fo r  C. 

Satisfaction of s t iU another necessary 

The approximating expressions (1.10) must s a t i s f y  a l l  conditions (1.13) f o r  

w and 8.  

sulting from eqs.(l.U), (1.12) since these represent the conditions of vanish- 

ing of the derivatives of eqs.(l.lO) a t  11 = 1. 

Furthermore, t he i r  select ion i s  subject t o  additional conditions r e  

In the presence of heat transfer, the equation f o r  < w i l l  have the form 

where 

s, s1, s2, d = constants dependent on the selection of the functions 

[ eq. ( 1.10) I. 

2. The Heat-Insulated Plane Plate  
? In this case, us = const, u6 = 0. 
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I The boundary condition fo r  the  dimensionless temperature a t  the wall i s  

The expressions (1.10) will take t h e  form 
- - 

1 -  ? = 0.5 (3 i  -3). (2.2) I 
9-1 -0.75(1 -Pr)d(l-3?+2?). j 

The prof i le  (2.2) was used elsewhere (Bibl.7) in generalizing the approx- 

imate solution (Bibl.1) f o r  a compressible gas a t  Pr  = 1 and in the absence of 

heat transfer between the  gas and the  body. 

t ions (1.u) and also the condition Gr(0) = 0 resul t ing from eq.(l.ll). 

prof i le  (2.3) obeys the boundary conditions (1.13) [the condition (2.1) i s  taken 

a t  the  w a l l ] ,  and also the  condition 

(2.3 j 

~ 

It satisfies the  boundary condi- 
I 

I 

The 

which follows from eq.(l.U) with the  use of eq.(2.2). I 

Equation (loll), with consideration of eq.(2.2), takes the  form 

Solving this equation with the boundary conditions (1.13) f o r  '0, w e  f ind  I .  

the  veloci ty  prof i le  
I 

! I 

1.621:- 1-091~fO.~' -0.- (2.5) 
C p = - - P  U 

a, 

and the  equation f o r  determining 5 

~a C'pd; 

where d = 23.27. 

Integrating eq.(1.6) in the  case of c(0)  = 0 and returning t o  the 
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variable x, we obtain I 

' 4  

4 

¶ 

C = = - ( l - * ) * - f .  (2.7) 

27, 

pSu; 
For the local coefficient of f r ic t ion  cf  = - w e  obtain, as before 

(Bibl. 7), the q s s i o n  

r q  61 Y Re!SCf =u.ol;l* \&*- / 
L "-a * I- 

u6x 
V6 

where Re,  = -. In deriving eq.(2.8), w e  used the relations 

eq~.(2.5), (2.7), and also the  relations 
I 

which f o l l o w  from eqs.(l.l), (1.6), (L7). 

The proposed solution agrees well with the self-mapping solution (Bibl.6) 

which, on the right-hand side of eq.(2.8), gives a value of 0.664. 

Equation (1.12) i n  this case takes the form 
Pr (1 - Pr) a', u,C' (273 - -- 

pa 

- (1 - Pr)a;(?r - 16 03 
- 27;;' - 4,5? + 4,521, 

- 
Integrating it f o r  the cases = 0, e l v = l =  1 and using e~.(2.6),  we 

setting 7 = 0 in q.(2.9),  we find the dimensionless tesnperature of the 

surf ace I 
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and the  recovery coefficient 

r- Lt--** = 1 --(1 - Pi) (I -0.616 Pr). 
Ty- ra 

(2.10) 

For a i r  (Pr = 0.72), we obtain r = 0.844. 

Figure 1 gives a comparison of the values of r f o r  a plane p ia te  caicuiated 

by ~ q ~ ( 2 . Y )  (curve 1) with the results of the self-mapping solution (Bibl.6) 

(curve 2) and with the  data of the  calculation by the known f o m l a  r = f i  

(curve 3). Satisfactory coincidence i s  obtained in the  range of P r  = 0.65 - 1. 
(32 

Fig.1 

3. H e a t  Transfer on a Plane P la te  

In this case, we w i l l  take the condition f o r  the w a l l  temperature 

For an approximate solution of t h e  problem, le t  us use the velocity pro- 

f i l e  (2.2) and the  stagnation temperature prof i le  

c= 1 -0.5(1 -Ow) (2 - 3i4-3).-  1.12541 - a:G- 23+3)1> 

8 



found with respect t o  the conditions (1.13) f o r  8 [ the condition (3.1) i s  taken 

I on the wall] and t o  the condition (2.4). 

Equations (2.5) - (2.8) remain valid here. 

Limi t ing  ourselves to  the  case of the absence of a longitudinal teZnperature I 

gradient, we can represent eq.(l.l2) i n  the form 

Integrating the  equation written f o r  the conditions e!F=o = e,, el-- = 1, 

we obtain 

Proceeding from a determination of the l o c a l  Nusselt number 

(q i s  the  t h e m 1  flux) and using eq.(2.10) as w e l l  as the  expressions 

I 

=($) =(1+0.622P1) (1 -OW)- , 
i a g  -d . 

8, - [the lat ter i s  obtained because of the  constancy of cp,  Pr, and kw - - -  
1 - (Y; 

where 
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A t  Pr = 1, ar = 1. Assuming a1 = 1 (in v i e w  of the  proximity of Pr to  l), 

we write in place of eq.(3.4): 

where 

Nu, --- 
V K  (3.5) 

The value 0,333 (Pr) for Pr = 0.6 - L O  d i f f e r s  l i t t l e  from the value of 

0.332m used in the  theory of heat t ransfer  (Bibl.10). The values of these 

quant i t ies  are shown in  Fig.2. 

On the  basis of e q ~ ~ ( 2 . 8 )  and (3 .5 )  we obtain 

Figure 2 shows that, i n  the range of Prandtlnumbers under consideration, 



. 

the  function f (P r )  differs l i t t l e  f r o m  s, ire., f o r  the  given solution the 

Reynolds analogy between f r i c t i o n  and hea t  transfer is  well satisfied. 

When using the local heat-transfer coefficient cy, = kaNux.. the  specif ic  
X 

thermal flux w i l l  be expressed by the  fonmiLa 

. -  
B = w l r , ?  w. 

The coefficient cy, i s  expressed in terms of the  flow parameters and the  

Stanton nmber h,: 

Taking in to  account (3.5) w e  obtain 

For air ,  considering Pr = 0.72, we have 

In t he  known formulas f o r  h,, a value of 0.408 i s  substi tuted f o r  0,410. 

Let  u s  note the fo&wing: 

Applying the condition (2.1) to the prof i le  (3.3) w i l l  yield 

The corresponding recovery coefficient i s  

(1 - PI) (1 - 0.150 Pr) 
t + 0,62!2 Pr 

f - 1 -  (3 7) 

If, i n  eq.(3.4) the  expression (3.6) i s  used instead of eq.(2,10), then 



a, = 1 regardless of e,, a;, and Pr. 

For comparison, Fig.1 shows t h e  r e su l t s  of calculating r from eq.(3.7) 

( m e  4). It i s  obvious that this formula i s  less accurate than eq.(2.U). 

4. H e a t  Transfer in t h e  Vicinity of the Forward Stagnation Point 

~n this case, l e t  us set, as usual u6 = pxy a: = o ( B  is a constant j. 

Then eq.(l.ll+) takes the  form 

Considering 8 ,  = const, we f ind the solution of this equation: 

whence 5’ = 0. 

The form parameter 1 = 
q’‘ 
1 - a; in this case i s  equal t o  

To solve eqs.(l.31)y (1.12) l e t  us use polynomials of the four th  degree as 

The coefficients of these polynomials are determined f r o m  the conditions fi 
- - 

(1.3) and f r o m  the  auxiliary conditions: c p g g ( l )  = &l) = eil(l) = 0. 

In the  case under consideration eq~~(1.3l)~ (1.12) take the form 

(4.4) 



where 

Integrating eq.(4.3) and using the  con’ 

R1 (4) = 0.31 - 0.G’ + 0 . w  -0.13 +O.O3@, 

& (i) = 0.07781-0.33333 + 0.$667? - 0.7$ +O.@ - 
i 

41 
- 0.2667q + 0.13 - 0.0222;;’ + 0.0022$0. 

= 1 w i l l  y ie ld  - Integrating eq.(4.4) f o r  the conditions: Sly=,, - e , ,  

The specific thermal flux i s  

As usual, l e t  us assume k6 = LA., Tact = T%. in t he  Vicinity of the forward 

stagnation point. W e  w i l l  a lso consider that, as a consequence of q.(1.1) and 

k w  
k.4 

of the  constancy of cp  and Pr, we have - = 8,. Then, f o r  the Nusselt number 

we obtain the  re la t ion  

he re  
dors 

dx 
= value of the quantity 7 in the v ic in i ty  of /36 -? - Bk - 

13 
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the stagnation ( c r i t i ca l )  pint, 
X - 

x = - where t is  the characterist ic dimension, 

0 = as subscript, conditions of the relative flow. 
6 

The heat transfer coefficient Q i s  connected with the Nu number by the re- 

la t ion  

a =  

-# 

W e  note that in eq.(4.8) the cpantity a6 i s  half the  W w t i t y  in the 

In essence, these formulas differ o n u  
cr 

analogous formula by Kalikhman (Bibl.3). 

by the coefficients; in the latter, the coefficient i s  Nl = 0.570 Pro&, whereas 

in the former it i s  

where a t  0, = 1 (then, Xo = lo.%), it equals 0,302 (1 + 0.877 Pr) ,  

W e  should also mention the solution of the problem of forced laminar con- 

vection from a cylinder close t o  the forward stagnation point (Bibl.10) which 

agrees w e l l  with the experimental data. 

incides with Nl a t  P r  = 0.6 - 1,l. 
In this solution, the factor  a3 (Pr) co- 

A comparison (Fig.3) shows the satisfactory agreement of the quantit ies N, 

and N,. 
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0 

By means of the well-known Stepanov-Mangler transformation, the solutions 

are readi ly  extended t o  the boundary layer of bodies of revolution (Bibl.4, 6). 
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